Serum PFAS concentrations and testicular cancer among U.S. Air Force servicemen

Mark Purdue, PhD

Senior Investigator Division of Cancer Epidemiology and Genetics National Cancer Institute, NIH

Nov 16, 2023

Disclaimer

Opinions, interpretations, conclusions, and recommendations are mine and are not to be construed as official or necessarily endorsed by the Department of Defense, Uniformed Services University of the Health Sciences, the Centers for Disease Control and Prevention, or the National Institutes of Health.

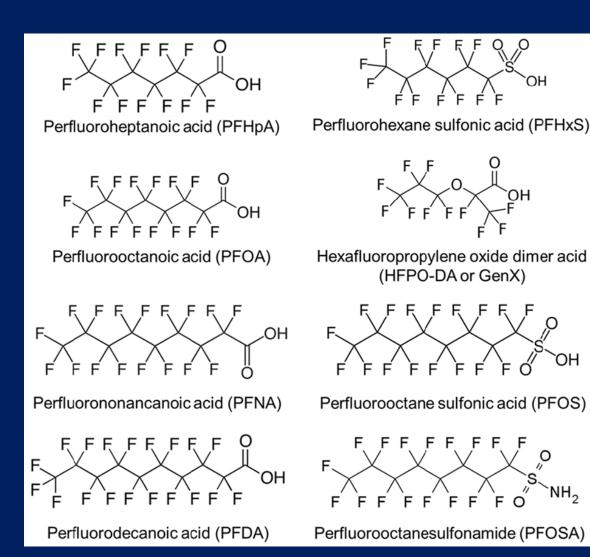
I have no conflicts of interest to disclose.

Presentation Outline

1) Background on PFAS

2) Study Aims, Methods, Results

3) Summary and Next Steps


Per- and Polyfloroalkyl Substances (PFAS)

Synthetic chemicals

• multiple fluorine atoms attached to an alkyl chain

>Unique properties:

- impart oil and water repellency
- temperature resistance
- friction reduction

PFAS: History and Uses

Invented in 1930s

In 1940s, companies begin manufacturing PFAS for use in commercial products

Used as non-stick coating for many commercial products:

- Cookware
- Textiles
- Paper products (food wrappers)

PFAS and Firefighting Foams

Aqueous Film-Forming Foam (AFFF)

- Effective in extinguishing flammable liquid fires
- PFAS a key ingredient

Military use of AFFF

- Used by DoD since 1970s
- Mostly AFFF formulations containing PFOS, PFHxS and, sometimes, PFOA

Phaseout of PFOS

- > 2003: 3M ceases production, sale of **PFOS**
 - Phaseout of PFOS-based AFFF (originally ~75% of DoD supplies)

Phaseout of PFOS

> 2003: 3M ceases production, sale of **PFOS**

• Phaseout of PFOS-based AFFF (originally ~75% of DoD supplies)

➢ 2016: DoD restricts use of PFOS-based AFFF and initiates water testing across all bases (Sullivan 2016)

- 401 bases with known/suspected PFAS release
- 90 bases with groundwater PFOS/PFOA concentrations > 70 ppt
- 36 bases with drinking water PFOS/PFOA concentrations > 70 ppt

Phaseout of PFOS

- > 2003: 3M ceases production, sale of **PFOS**
 - Phaseout of PFOS-based AFFF (originally ~75% of DoD supplies)
- ➢ 2016: DoD restricts use of PFOS-based AFFF and initiates water testing across all bases (Sullivan 2016)
 - 401 bases with known/suspected PFAS release
 - 90 bases with groundwater PFOS/PFOA concentrations > 70 ppt
 - 36 bases with drinking water PFOS/PFOA concentrations > 70 ppt

➢ 2018: DoD begins conversion to AFFF with short-chain PFAS (low bioaccumulation risk) & exploring PFAS-free alternatives

PFAS and the Environment

Resistant to degradation; persist in the environment ("forever chemicals")

PFAS detectable in most Americans (Calafat et al. 2007)

- Occupational exposures (e.g. PFAS production, firefighters)
- Consumption of contaminated food and water
- AFFF use at airports and military facilities an important source of PFAS in public water systems (Hu et al. 2016)

PFAS – Suspected Health Effects

Epidemiologic studies have suggested associations between PFAS exposures and several health outcomes:

- Elevated total & LDL cholesterol
- Pregnancy-induced hypertension
- Immune effects
- Thyroid disease
- <u>Cancer</u>

PFAS and Cancer

- In 2014, the World Health Organization's International Agency for Research (IARC) on Cancer classified PFOA as a possible human carcinogen
 - Evidence strongest for cancers of the kidney and testis
- Fewer studies have investigated other PFAS (mainly PFOS); evidence inconclusive

Knowledge Gaps

1) What is the level of PFAS exposure among military personnel?

- How do they compare to the general population?
- Are there service-related predictors of elevated exposure?

2) Are PFAS exposures associated with cancer risk in this population?

Nested Case-Control Study of Serum PFAS and Testicular Cancer in Air Force Servicemen

>Why Testicular Cancer?

- Most common cancer diagnosed among active-duty servicemen
- Previous evidence suggesting associations with PFOA

>Why Air Force Personnel?

 In 2016-2017 DoD testing of military drinking water systems, half of the bases with known or suspected PFOS/PFOA release were Air Force installations (Sullivan 2018)

Study Design

Source Population:

 Active-duty Air Force servicemen with serum banked in the DoD Serum Repository between 1988 and 2017

►<u>Cases</u>:

530 cases of testicular cancer diagnosed during active duty (1990 - 2018)

►<u>Controls</u>:

• Individually matched to cases (1:1 ratio) on birth date, race/ethnicity, accession year, year(s) of sample collection

Serum Selection

For most subjects, 1 banked sample selected

➤ 2 samples per subject selected for 187 case-control pairs with cases diagnosed ≥5 years after earliest serum collection date

- Sample 1 usually collected at start of service (median 0.3 years of service)
- Sample 2 usually collected several years later (median 5.8 years of service)

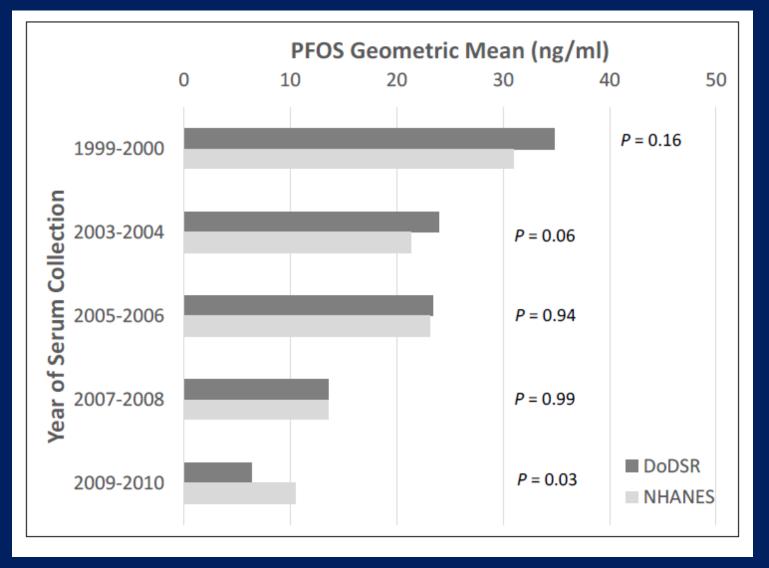
Serum PFAS Concentrations

Measurements conducted at CDC using isotope-dilution tandem mass spectrometry

Seven PFAS measured:

- PFOS
- PFOA
- PFHxS
- PFNA
- MeFOSAA
- PFDA
- PFUnDA

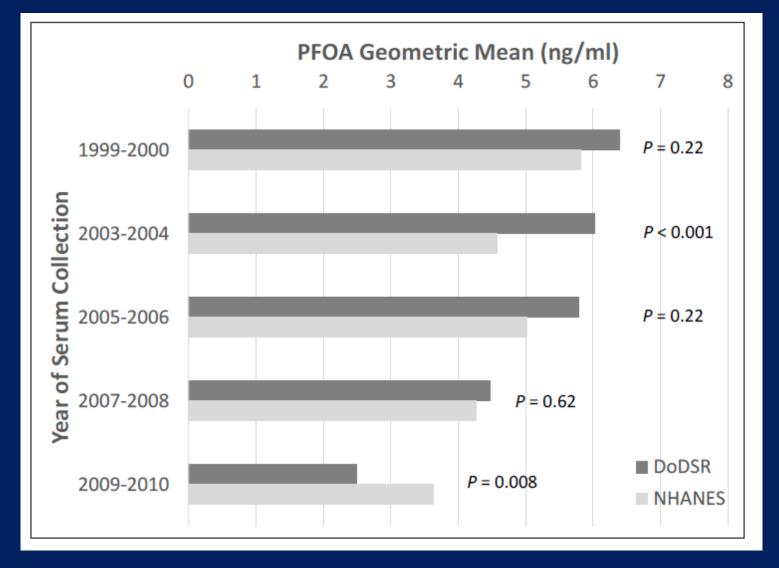
RESULTS


Study Participant Characteristics

Characteristic	Cases	Controls	Ρ
Age at Case Diagnosis [n (%)]			
<25	121 (23%)	121 (23%)	-
25-34	272 (51%)	272 (51%)	(matching factor)
35-39	137 (26%)	137 (26%)	
Race and Ethnicity [n (%)]			
Non-Hispanic White	422 (80%)	422 (80%)	-
Hispanic	57 (11%)	57 (11%)	(matching factor)
Non-Hispanic Black	13 (3%)	13 (3%)	
Asian	6 (1%)	6 (1%)	
Other / Unknown	27 (5%)	27 (5%)	
Military Grade [n (%)]			
Enlisted	410 (77%)	435 (82%)	
Officer	120 (23%)	95 (18%)	0.06

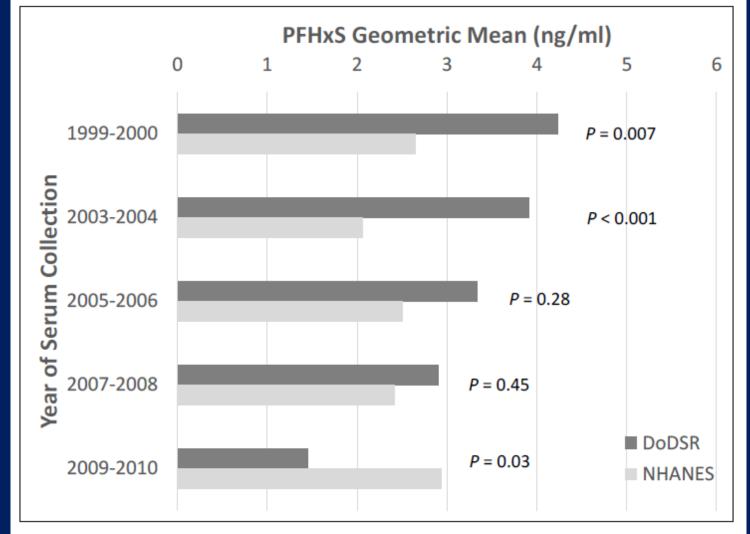
PFAS: Controls vs. General Population

PFOS

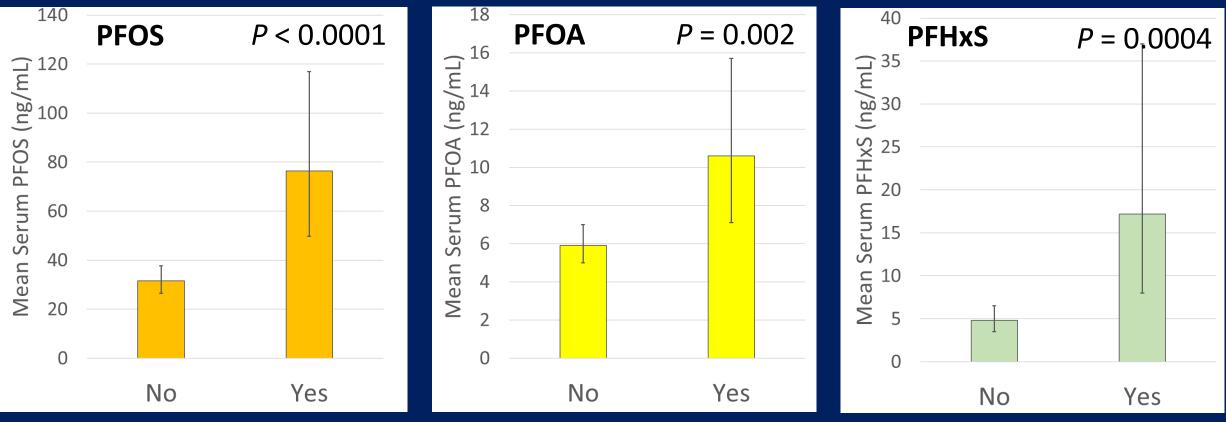

 Serum concentrations declined over time in both populations

PFAS: Controls vs. General Population

PFOA

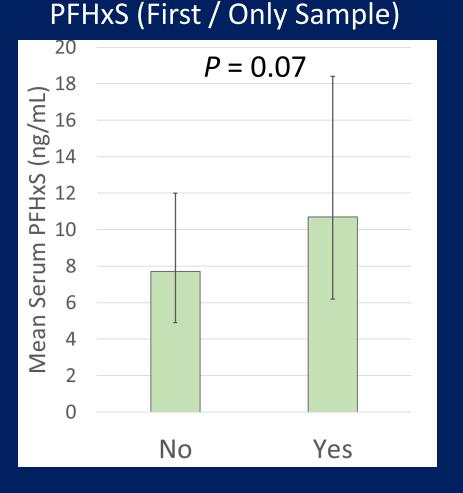

• Weaker decline over time

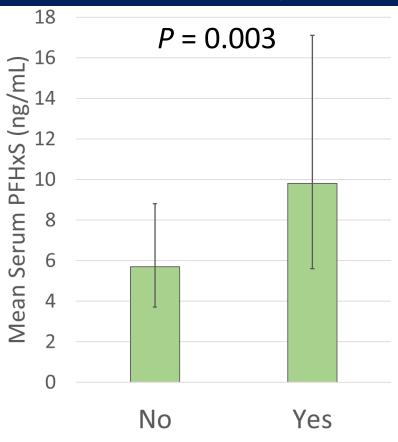
PFAS: Controls vs. General Population


PFHxS

 higher in study controls vs. NHANES (<2004); lower in 2009-2010

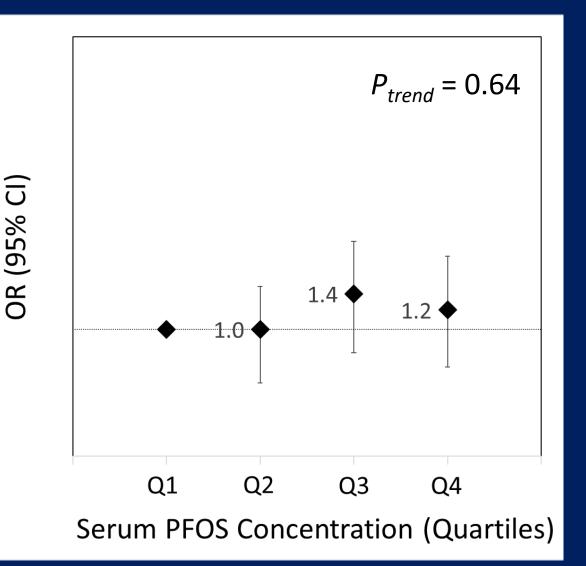
Results: Service-Related Predictors of Serum PFAS


1) Military firefighting associated with elevated serum PFOS, PFOA, PFHxS

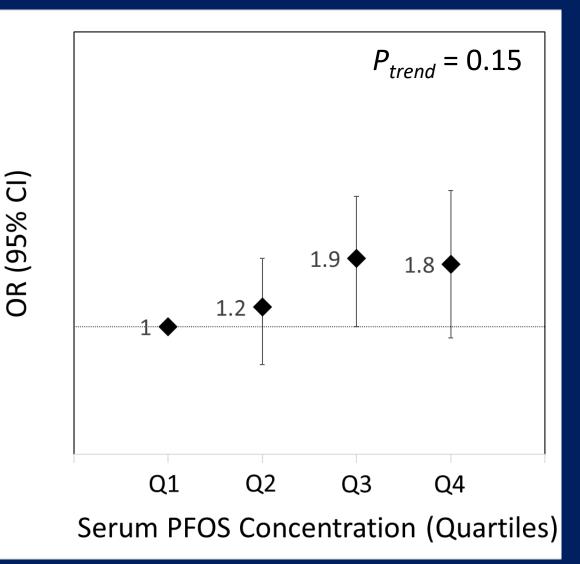

Results: Service-Related Predictors of Serum PFAS

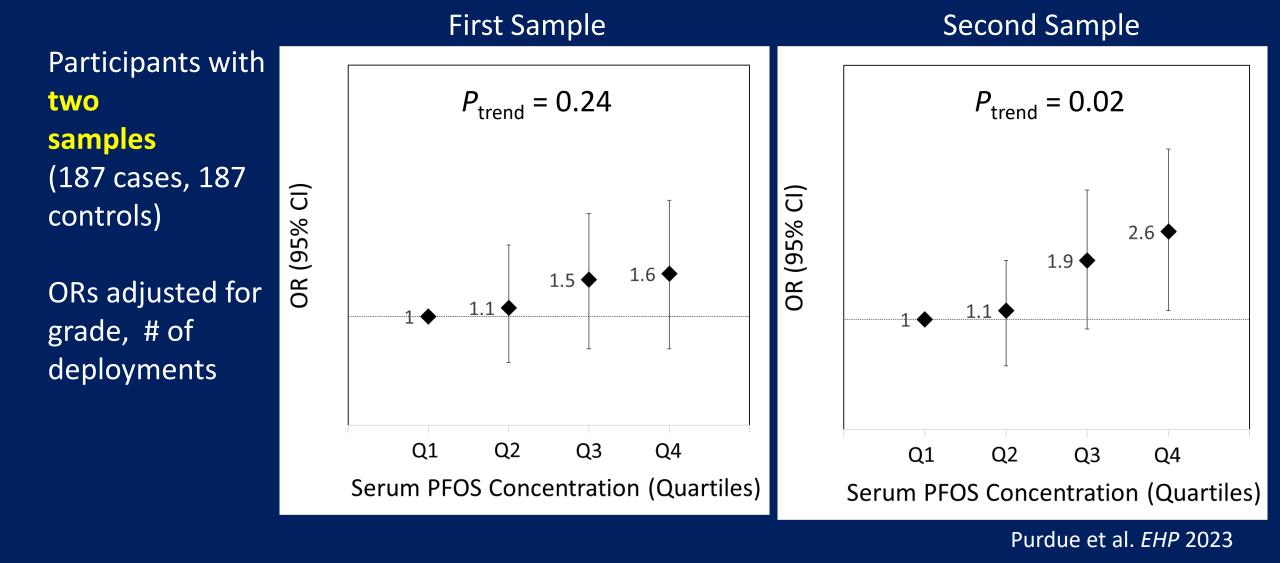
Service at an Air Force installation with drinking water PFOS/PFOA concentration > 70 ppt

(Sullivan 2018)



PFHxS (Second Sample)


First / Only Sample (530 cases, 530 controls)


Odds ratios computed using conditional logistic regression adjusted for grade and # of overseas deployments

First / Only Sample (530 cases, 530 controls)

Odds ratios computed using conditional logistic regression adjusted for grade and # of overseas deployments and other PFAS

Second Sample **First Sample** Participants with $P_{\rm trend} = 0.24$ $P_{\rm trend} = 0.009$ two samples (187 cases, 187 4.6C) <u></u><u></u> controls) (95% (95% 2.8 2.0 1.6 1.5OR Ľ ORs adjusted for \overline{O} 1.2 1.0 1.0 grade, # of deployments and other **PFAS** Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Serum PFOS Concentration (Quartiles) Serum PFOS Concentration (Quartiles)

Results for Other PFAS

PFOA, PFHxS and other PFAS not associated with testicular cancer

Serum PFNA inversely associated with testicular cancer

• Association confined to cases diagnosed <5 years after serum collection

Discussion: Key Findings

1) In early 2000s, higher serum PFHxS in servicemen vs. NHANES

2) Service-related predictors of elevated serum PFAS:

- Fire protection occupation (PFOS, PFOA, PFHxS)
- Service on base with drinking water PFOA/PFAS >70 ppt (PFHxS)

3) Elevated serum PFOS associated with increased risk of testicular cancer (and findings null for PFOA)

Discussion: PFOS and Testicular Cancer

First evidence associating PFOS levels and testicular cancer

Hypothesized that endocrine-disrupting chemicals may contribute to the pathogenesis of testicular cancer (Toppari 2008)

Experimental evidence of PFOS-induced male reproductive toxicity (summarized in Zeng et al. 2019)

- Adult mice: reduced testis weight and sperm counts
- Adult rats: testicular edema, degeneration of gonadotrophic cells
- Zebrafish: gonad structural changes, decreased sperm counts

Important Research Questions

> Are these findings replicable?

• Follow-up DoDSR study in other service branches under development

> What is the PFAS serum burden among <u>current</u> DoD personnel?

Are PFAS associated with other health conditions among military personnel and veterans?

Are short-chain PFAS (now used in AFFFs) safe?

STUDY COLLABORATORS:

USU Jennifer Rusiecki (Co-PI)

Celia Byrne Hristina Denic-Roberts (now at NINR)

NCI

Katherine McGlynn Jongeun Rhee Joshua Sampson (now at FDA)

Air Force School of Aerospace Medicine Maj. Michael A. Lang

U.S. Air Force Medical Readiness Agency Maj. Paul D. Vu

ACKNOWLEDGMENTS:

USU Ivy Hung

Armed Forces Health Surveillance Division Shauna Stahlman Angelia Cost

FUNDING:

This research was supported by:

- the Office of the Assistant Secretary of Defense for Health Affairs through the Peer-Reviewed Cancer Research Program (W81XWH-19-1-1044) and
- the Intramural Research Program of the National Cancer Institute, National Institutes of Health